Skip to main content

Ptrace

Ptrace is a nice setup ( some people call dirty setup) on linux to debug running processes. This ptrace in sys/ptrace.h is used by strace and gdb. To trace a child process, the child process should call PTRACE_TRACEME. The kernel during each system call(or execution of each instruction) checks if the process is traced. If it is traced, it issues a SIGTRAP, the parent process if in wait() state, will get a signal. The parent issues a SIGSTOP to hold current state of child and can access the registers and memory of child using PEEKDATA and alter the values in register and memory using POKEDATA. Once the required job is done, parent will allow the child to run with a SIGCONT signal. Since one can access registers, the next instruction to be executed can be easily found using instruction pointer, this comes in handy when we need to set breakpoints while debugging. The entire code base can also be changed using ptrace.

PTRACE_ATTACH attaches a running process. It does some hack to become a temporary parent of the process(though PPID of the process points to the original parent). This helps us to run strace on any process with just the pid.
A comprehensive tutorial on ptrace is availabe at
http://www.linuxjournal.com/article/6100?page=0,0
http://www.linuxjournal.com/article/6210?page=0,0

Ptrace will cause huge performance degradation as it causes the child to make a lot of context switching(due to SIGSTOP signal)
Since Ubuntu 10.10, some restrictions are put on ptrace_attach where a non privileged user cant attach a process even if it is  running with the same uid as his. The file /etc/sysctl.d/10-ptrace.conf(the file  is self explanatory) has to edited appropriately if PTRACE_ATTACH is to be executed by non privileged users.

Comments

Popular posts from this blog

Lessons from Memory

Started debugging an issue where Linux started calling OOM reaper despite tons of memory is used as Linux cached pages. My assumption was if there is a memory pressure, cache should shrink and leave way for the application to use. This is the documented and expected behavior. OOM reaper is called when few number of times page allocation has failed consequently. If for example mysql wants to grow its buffer and it asks for a page allocation and if the page allocation fails repeatedly, kernel invokes oom reaper. OOM reaper won't move out pages, it sleeps for some time and sees if kswapd or a program has freed up caches/application pages. If not it will start doing the dirty job of killing applications and freeing up memory. In our mysql setup, mysql is the application using most of the Used Memory, so no other application can free up memory for mysql to use. Cached pages are stored as 2 lists in Linux kernel viz active and inactive.
More details here
https://www.kernel.org/doc/gorman…

Walking down the Memory Lane!!!

This post is going to be an account of  few trouble-shootings I did recently to combat various I/O sluggishness.
Slow system during problems with backup
We have a NFS mount where we push backups of our database daily. Due to some update to the NFS infra, we started seeing throughput of NFS server drastically affected. During this time we saw general sluggishness in the system during backups. Even ssh logins appeared slower. Some boxes had to be rebooted due to this sluggishness as they were too slow to operate on them. First question we wanted to answer, does NFS keep writing if the server is slow? The slow server applied back pressure by sending small advertised window(TCP) to clients. So clients can't push huge writes if server is affected. Client writes to its page cache. The data from page cache is pushed to server when there is a memory pressure or file close is called. If server is slow, client can easily reach upto dirty_background_ratio set for page cache in sysctl. This di…

How we have systematically improved the roads our packets travel to help data imports and exports flourish

This blog post is an account of how we have toiled over the years to improve the throughput of our interDC tunnels. I joined this company around 2012. We were scaling aggressively then. We quickly expanded to 4 DCs with a mixture of AWS and colocation. Our primary DC is connected to all these new DCs via IPSEC tunnels established from SRX. The SRX model we had, had an IPSEC throughput of 350Mbps. Around December 2015 we saturated the SRX. Buying SRX was an option on the table. Buying one with 2Gbps throughput would have cut the story short. The tech team didn't see it happening.

I don't have an answer to the question, "Is it worth spending time in solving a problem if a solution is already available out of box?" This project helped us in improving our critical thinking and in experiencing the theoretical network fundamentals on live traffic, but also caused us quite a bit of fatigue due to management overhead. Cutting short the philosophy, lets jump to the story.

De…